Разработка ТГУ делает растворимые имплантаты безопасными

Учёные Тольяттинского государственного университета (ТГУ) создали установку, предназначенную для более точной оценки коррозионной стойкости и усталостной долговечности биорезорбируемых магниевых сплавов.
Разработка ТГУ делает растворимые имплантаты безопасными

Биорезорбируемые магниевые сплавы открывают новую эру в создании медицинских имплантатов, способных растворяться в организме. Однако для их безопасного и эффективного применения необходимо тщательно изучить поведение материала в приближенных к реальной, агрессивной биологической среде человеческого тела. Для чего необходимо специальное лабораторное оборудование. Группа учёных ТГУ – Дмитрий Мерсон, Александр Брилевский и Михаил Линдеров – разработала и активно применяет в испытаниях биорезорбируемых магниевых сплавов улучшенную установку для проведения коррозионно-усталостных испытаний. Статья об этой разработке опубликована в отечественном высокорейтинговом научном журнале «Заводская лаборатория. Диагностика материалов».

Установка собрана (и адаптирована под испытания магниевых сплавов) на базе электромеханической усталостной машины Instron Electropuls E1000, которая в течение нескольких лет успешно используется в НИИ прогрессивных технологий Тольяттинского государственного университета для оценки коррозионно-усталостной долговечности.

– На этой установке мы с помощью различных физиологических растворов имитируем среду человеческого организма и смотрим, как быстро материал разрушается под воздействием циклического нагружения и коррозии, – рассказывает автор статьи Михаил Линдеров. – Это помогает оценивать долговечность работы материала в условиях, приближенных к реальным.

Для России тема биорезорбируемых магниевых имплантатов новая: кроме ТГУ, для челюстно-лицевой хирургии и травматологии их в стране пока нигде не производят. Нет и отечественного оборудования, необходимого для всесторонних качественных испытаний магниевых сплавов – все разрабатывается в зарубежных лабораториях, доступ к материалам которых сейчас затруднен. Так что создание собственной установки для качественных испытаний – это ещё и шаг в сторону импортозамещения.

Какой-либо стандартной установки для этих целей в настоящее время не существует – в каждом случае авторы предлагают свои варианты оборудования и условий испытания. По этой причине полученные разными авторами данные, как правило, невозможно сравнить. В первую очередь это связано с тем, что при проведении коррозионно-усталостных испытаний магниевых сплавов присутствует множество технических факторов, значимо влияющих на конечный результат эксперимента. В том числе требования соответствию ГОСТ Р ИСО 16428-2014 (ISO 16428, устанавливает стандартные условия для испытания имплантируемых металлических материалов, хирургических имплантатов и медицинских изделий. – Прим. ред.).

– Есть классические испытания на коррозионную усталость, которые делаются для технических целей. Но конкретно для сплавов, которые будут использоваться в медицине, нужно учитывать особые «медицинские факторы»: например, контроль pH, поддержание определенной температуры. Частично это прописано в ГОСТ Р ИСО 16428-2014, – объясняет Михаил Линдеров. – Причем некоторые параметры образцов – например, толщина – расходятся с промышленными. Имплантат, как правило, не толще двух мм, поэтому и образцы выбраны схожей толщины, а для промышленных испытаний принято использовать образцы большего размера, от 5 мм.

Также необходимо упомянуть, что есть проблема в сопоставлении между собой результатов исследований, полученных на разном оборудовании. Часто авторы научных работ не описывают используемую установку подробно, что может сказаться как на достоверности, так и на воспроизводимости получаемых данных. Предложенная же разработка содержит как подробный перечень оборудования, так и некоторые из важных чертежей, поэтому ее можно реализовать и в лабораторных, и в заводских условиях.

Как это работает? Испытательная машина создаёт нагрузку на образец, имитируя движения и нагрузки, которые испытывает имплантат в организме. В герметичную камеру помещается физиологический раствор, имитирующий среду человеческого организма. Такой жидкостью может выступать изотонический раствор Рингера, Хэнкса, 0,9 % NaCl, SBF (simulated body fluid) и другие. Система контроля температуры и pH поддерживает нужную температуру и кислотность для имитации условий человеческого тела. А специальные захваты держат образец материала, не влияя на процесс коррозии.

– Наша установка позволяет достаточно быстро оценить долговечность работы магниевых сплавов в коррозионных средах, – рассказывает Михаил Линдеров. – Магний – материал специфический, он образует гальваническую пару практически с любым другим металлом. Поэтому, например, очень важно, чтобы при его испытании использовались неметаллические захваты. Стандартные же захваты на всех используемых установках сделаны из металла. Это один из факторов, на который до сих пор мало обращают внимание, а он может критически сказаться на результатах (мы проверяли, пока разрабатывали установку).

Разработанная установка позволяет получить достоверные и воспроизводимые результаты по ключевым параметрам, что очень важно не только для контроля качества уже созданных материалов, но и для разработки нового поколения биомедицинских сплавов. Корректная оценка коррозионно-усталостной долговечности материалов позволяет выбрать наиболее оптимальный сплав для материала, растворяющегося в организме после выполнения своей функции. Разработка тольяттинских учёных открывает новые возможности для развития биомедицинской инженерии и создания в будущем поколения «умных» медицинских устройств.

Напомним, производство магниевых имплантатов – один из продуктовых проектов, с которым Тольяттинский госуниверситет вошёл в федеральную программу стратегического академического лидерства «Приоритет 2030». В ТГУ давно работают над биорезорбируемыми медицинскими магниевыми сплавами, предназначенными для изготовления широкого спектра временных медицинских конструкций. В первую очередь – имплантатов в виде кортикальных винтов Герберта и спиц, применяемых в челюстно-лицевой хирургии, а также для сращивания костей конечностей после повреждений и переломов. Первого сентября 2024 года в технопарке передовой инженерной школы «ГибридТЕХ» губернатор Самарской области Вячеслав Федорищев и министр высшего образования и науки РФ Валерий Фальков произвели запуск производства изделий медицинского назначения из магниевых сплавов для эндопротезирования.

Читайте также

все

ПИШ «ГибридТех» ТГУ поработает на нефтянку

Тольяттинский государственный университет (ТГУ) и компания «МНКТ» (Казань) заключили соглашение о вс...

Сотрудникам ТГУ доступна платформа научной аналитики

В рамках национальной подписки Тольяттинскому государственному университету (ТГУ) с 1 октября по 31...

ТГУ готов выполнять государственные оборонные заказы

В Тольяттинском госуниверситете (ТГУ) проведён очередной ресертификационный аудит системы менеджмент...

Формула хрупкости и вязкости: ТГУ предскажет катастрофы

Исследование Тольяттинского государственного университета (ТГУ), опубликованное в старейшем научном...

В ТГУ завершилась кросс-вузовская экспертиза

В течение двух дней работала в Тольяттинском государственном университете (ТГУ) экспертная группа пр...

Преподаватели ТГУ учат китайских студентов русскому

Как пишет ТАСС, интенсив по русскому языку в Тольяттинс...

Новая методика обучения повышает оценки фигуристов

Специалисты Тольяттинского государственного университета и Санкт-Петербургского Национального госуда...

445020, Самарская область, Тольятти, Белорусская ул.,14

+7 (8482) 44-94-24
44-94-44

Пн-пт: 8:15-17:00 (перерыв: 12:30-13:15)

office@tltsu.ru